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Choice of genetically unrelated mates is widely documented, yet it is not known how self-referential mate

choice can co-occur with commonly observed directional selection on sexual displays. Across 10 breeding

seasons in a wild bird population, we found strong fitness benefits of matings between genetically unrelated

partners and show that self-referential choice of genetically unrelated mates alternates with sexual selection

on elaborate plumage. Seasonal cycles of diminishing variation in ornamentation, caused by early pairing

of the most elaborated males, and influx of increasingly genetically unrelated available mates caused by

female-biased dispersal, lead to temporal fluctuations in the target of mate choice and enabled coexistence

of directional selection for ornament elaboration with adaptive pairing of genetically unrelated partners.
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1. INTRODUCTION
Preference for genetically unrelated mates is favoured by

natural selection when it minimizes homozygosity of

deleterious recessive alleles in progeny (Amos et al.

2001; Keller & Waller 2002; Keller et al. 2002; Foerster

et al. 2003), results in heterosis (Turelli & Ginzburg 1983),

or enhances immunocompetence (Brown 1998; Johnsen

et al. 2000; Wegner et al. 2003). Yet, crucial aspects of

mate choice based on self-referential genetic character-

istics are still unresolved. Not only are the mechanisms by

which individuals can identify genetically complementary

mates unknown ( Johnsen et al. 2000; Roberts & Gosling

2003), but it is also unclear how these mechanisms can

evolve (Colegrave et al. 2002; Shuster & Wade 2003).

More generally, the evolution of elaborate ornaments

requires that the most elaborate males are disproportion-

ally successful in attracting mates, whereas mate choice

based on genetic relatedness implies that the best mate for

one individual may not be the best for another (Andersson

1994). Moreover, theory suggests that the strength of self-

referential mate selection should become progressively

weaker with greater genetic complementarity among

potential partners (Shuster & Wade 2003), yet empirical

studies commonly document continuous preference for

unrelated mates (Bensch et al. 1994; Amos et al. 2001).

A proposed, but empirically untested resolution of this

paradox states that directional selection for sexual displays

that indicate mate quality and preference for genetically

unrelated mates can coexist when they have independent

genetic benefits (Neff & Pitcher 2005) or when changes in

temporal and spatial distribution of potential mates result

in fluctuations in the opportunity for selection on sexual

ornamentation or genetic complementarity (Colegrave
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et al. 2002; Shuster & Wade 2003). For example, in many

temperate birds, strong selection for early breeding

favours rapid pairing, often based on sexual signals

indicating mate quality, followed by a subsequent

adjustment of the initial mate choice through extrapair

fertilizations ( Johnsen et al. 2000; Blomqvist et al.

2002; Foerster et al. 2003) or additional matings

(Freeman-Gallant 1996). When the genetic composition

of a population of potential mates changes predictably

across space and time, such additional mate choice allows

for the selection of genetically unrelated mates in reference

to social mates (Slagsvold et al. 2001; Blomqvist et al.

2002; Schmoll et al. 2005) or breeding locations (Foerster

et al. 2003), as well as reduces the risk of inbreeding

associated with strong directional selection on sexual

ornamentation (Shuster & Wade 2003).

We hypothesized that temporal changes in the varia-

bility of sexual displays and in genetic relatedness among

available mates, and corresponding changes in the targets

of female mate choice, should result in the temporal

alternation of directional sexual selection on ornamenta-

tion and adaptive genetic complementarity in mate choice.

To test this hypothesis, we examined seasonal changes in

genetic relatedness of available mates in relation to social

and extrapair mate selection, genetic parentage, offspring

survival, and variation in sexual ornamentation among

newly mated birds in a resident population of individually

marked house finches (Carpodacus mexicanus) breeding in

Montana, northwestern United States, from 1995 to

2004.
2. MATERIAL AND METHODS
(a) Study organism

From 1995 to 2004, at the onset of the breeding season in

each year, all birds in the study population were captured,

individually marked, and pair affiliations and nesting were

monitored continuously (Badyaev & Martin 2000a,b). Once

finches breed at the study site in their first year, most continue
q 2006 The Royal Society
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to breed there for the rest of their lives and reside within

the study site throughout the year (Badyaev & Duckworth

2003). Dispersing individuals joining the population for their

first breeding attempt were captured within 2 days of arrival

and individually marked (Badyaev et al. 2001b). We included

only newly pairing birds in the analyses of offspring survival in

order to account for the effects of previous mate familiarity.

To assess temporal changes in the pool of individuals available

for mating, all adults were categorized in relation to residency

or arrival at the study site. Individuals were categorized as

‘local’ if they were resident in the population in the winter

preceding the breeding season, or ‘non-local’ if they were not

present in the population during the winter. Non-local

individuals were further categorized with respect to median

arrival date for all other immigrants of the same sex within

each year, with ‘early’ indicating an arrival before and ‘late’

indicating arrival after median arrival date.

All surviving individually marked juveniles were recap-

tured weekly until 80–90 days old and their survival to that

age was calculated on a per nest basis (sexes combined). No

significant juvenile dispersal takes place before finches are

80 days old (Badyaev et al. 2001b). We used multiple

regression and general linear models to estimate the effects

of internal relatedness, nest initiation date, and the inter-

action among these factors on proportion of survived

juveniles of the brood and report standardized regression

coefficients (bST, in s.d.m.) and associated statistics. The

sexually selected carotenoid breast patch (Hill 1990) was

photographed for each male, under standard settings, at the

onset of each breeding season (Badyaev & Duckworth 2003).

We used SIGMASCAN PRO 5.0 (SPSS, Inc.) to measure

pigment hue elaboration of the patch, which varies from

dull yellow to deep purple. A 10!10 pixel grid was overlaid

on each image and one pixel was sampled in each square of

the grid. To standardize the colour circle scores to a linear

scale, we subtracted 2568 from scores and inverted the scale

(Badyaev et al. 2001a).

(b) Microsatellite genotyping and paternity analysis

We collected 40 ml of blood from each individual by brachial

venipuncture. All adults and offspring were genotyped at 16

highly polymorphic species-specific microsatellite loci

(Hofi53, HofiACAG07, HofiACAG25, Hofi16, Hofi29,

Hofi10, Hofi70, HofiACAG01, Hofi30, Hofi39, Hofi19,

Hofi35, Hofi69, HofiACAG15, Hofi07, Hofi26). PCR was

carried out using fluorescent-labelled primers (Applied

Biosystems, USA) and analysed by capillary electrophoresis

in an ABI Prism 3730 DNA analyzer. Discrete microsatellite

allele sizes were determined using GENOTYPER software

(Applied Biosystems, USA). Genotypes were analysed using

CERVUS v. 2.0 (Marshall et al. 1998) to calculate expected and

observed heterozygosities and estimate null allele frequencies,

while exact tests for departures from Hardy–Weinberg

equilibrium (HWE) were performed using GENEPOP v. 3.4

(see electronic supplementary material; Raymond & Rousset

1995; Jamieson & Taylor 1997). Two markers were excluded

from further analysis due to evidence of null alleles:

significant ( p!0.05) deviation from HWE (Hofi30) and

multiple occurrences of mother–offspring homozygote mis-

matches (Hofi69).

Paternity analysis was carried out using the likelihood

approach implemented in CERVUS (Marshall et al. 1998). This

method assigns paternity based on the sum of log-likelihood

ratios at each locus (LOD score) for each candidate parent,
Proc. R. Soc. B (2006)
with the highest LOD score indicating the most likely sire of

a particular offspring when the maternal identity is known.

Statistical confidence in paternity assignments was assessed

by calculating the difference between LOD scores among the

two most likely candidate parents (D). Critical values of D for

a 95% confidence level were obtained from simulated

parentage tests based on observed allele frequencies in each

year. Simulation parameters were selected as follows: the

number of candidate sires was defined as the total number of

males genotyped in a particular year; the proportion of males

sampled was estimated from population censuses conducted

systematically throughout the breeding season; the mean

proportion of loci typed was calculated directly from

observed genotypes; and error rate (i.e. typing errors, null

alleles, and mutations) was estimated by frequency of

mismatch between maternal and offspring genotypes

(0.0103). Simulations were reiterated for 10 000 cycles.

Paternity was assigned to a putative father only when the D

criterion associated with a 95% confidence level was

achieved. If none of the candidate males met this criterion,

offspring were considered to have been sired by an unsampled

individual (e.g. non-resident ‘floater’ males). We analysed

paternity for 200 offspring from 57 broods using CERVUS and

assigned paternity at a 95% confidence level for 196 offspring

(98%). Of these, nine (4.6%) offspring from seven broods

were identified as having been sired by a male other than the

social mate. The remaining four offspring all showed

matching alleles with putative mothers, but could not be

assigned to the social mate or any other sampled male with

95% confidence. Thus, we concluded that these four were

also extrapair offspring that were sired by or non-local

dispersing males that did not stay within the study site.

(c) Pairwise genetic relatedness and genetic diversity

Pairwise estimates of relatedness were calculated for all adults

using a method of moments estimator of MER software

(Wang 2002). Allele frequencies were calculated separately

for each year and standard errors were from bootstrapping

over loci (30 000 iterations). Genetic diversity within

individuals was calculated as internal relatedness (IR; Amos

et al. 2001), a maximum likelihood estimator derived from a

method proposed by Queller & Goodnight (1989). While

similar to multilocus heterozygosity, IR has the advantage of

being weighted by the frequency of individual alleles within a

population. Thus, an individual that is homozygous for a very

common allele is weighted differently from an individual

homozygous for two very rare alleles. This is particularly

valuable for this study, because we are interested in using the

markers as indicators of genome-wide diversity rather than

the diversity at the individual marker loci per se. Other

researchers have proposed d2—a microsatellite-specific

measurement of distance among alleles—as an alternative

measure of individual genetic diversity (Coulson et al. 1998).

However, this measure relies on the assumption of a stepwise

mutation process (Ellegren 2002) and specific population

inbreeding histories (Tsitrone et al. 2001).

(d) Patterns of mate choice

The relatedness of social and extrapair partners was

compared with the average relatedness of a pool of potential

partners at the time of pairing or fertilization, correspond-

ingly. For each female, we defined a potential social pairing

partner as any unpaired resident male that was present in the

population from the date of the female’s arrival (or from

http://rspb.royalsocietypublishing.org/
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Figure 1. Fitness consequences of offspring genetic diversity
in house finches in 1995–2004. The proportion of nestlings
per nest (nZ117) that survived to the onset of dispersal is
greater in nests with higher genetic diversity and earlier-
initiated nests. Larger IR values indicate lesser genetic
diversity.
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1 February for overwintering females) to the date of pair

formation. A potential extrapair partner was any resident

male that was present in the population during 10 days

preceding the onset of ovulation of the focal female (i.e. onset

of rapid yolk deposition stage in oogenesis; Young & Badyaev

2004). To examine how the genetic composition of the

mating pool changed across the season, we calculated the

mean pairwise relatedness between an arriving (non-local)

individual and all unpaired individuals of the opposite sex

present at the study site on the specific date of arrival.

Because of the influx of increasingly unrelated partners into

the population, the average relatedness among ‘social’

pairings late in the season is considerably lower than early

in the season (i.e. social mates late in the season were more

unrelated than social mates early in the season). Similarly,

because sex-biased dispersal, a commonly observed pattern in

birds, is likely to alter the genetic composition of the mating

pool across a season, we also calculated average pairwise

relatedness of each arriving individual to members of the

same sex that were present at the study site at the time of their

arrival (Knight et al. 1999; Gardner et al. 2001). If males and

females differ in either propensity for or distance of dispersal,

than we expect higher average relatedness among individuals

of one sex compared to the other (Prugnolle & de Meeus

2002).

Complete genotypes of an entire population (i.e. mating

females and all available social and extrapair males) were

available for 45 female mate selection episodes (nZ21 mating

episodes early in the season and nZ24 episodes late in the

season). Average pairwise relatedness between arriving (non-

local) individuals and individuals of the same sex present

at the study site at the time of arrival was calculated for all

nZ155 non-local males and nZ30 non-local females arriving

over the course of study. Sexual ornamentation was measured

for all males (local and non-local, nZ930). Average pairwise

female relatedness for available, social and extrapair males

was calculated for each female separately as least-squared

means with year as a covariate.
3. RESULTS
Breeding date and genetic relatedness of parents were

important determinants of post-fledging survival of off-

spring(figure1;FYEARZ2.76,pZ0.13;FINITIATIONDATEZ
8.91, pZ0.02; FIRZ12.4, p!0.01;FIR!INITIATION DATEZ
18.1, p!0.01). Offspring of more genetically related

parents were less genetically diverse than offspring of less

related parents (Spearman rZ0.74, nZ46 nests, p!0.01).

Within families, more genetically diverse offspring had

greater post-fledging survival than their less genetically

diverse full-siblings (F1,117Z4.29, pZ0.04), and among

families, offspring that hatched earlier in the season and

those from genetically unrelated matings had higher post-

fledging survival (figure 1; IR: bSTZK0.39, tZK3.06,

pZ0.003; initiation date: bSTZK0.20, tZK1.53,

pZ0.013).

In all years, average pairwise relatedness of available

mates in the breeding population changed predictably

throughout the season because of the difference in

breeding dispersal between the sexes. In each breeding

season, later-arriving males were not genetically distinct

from either local or early-arriving males and females

(figure 2a,b; males: bSTZK0.07, tZK0.90, pZ0.37;

females: bSTZK0.38, tZK2.20, pZ0.03; slopes are
Proc. R. Soc. B (2006)
significantly different: F1,184Z3.75, pZ0.05, year was

not a significant covariate) and were similar in the range of

sexual ornamentation to unmated males already in the

breeding population (figure 2b; males: F2,205Z0.09,

pZ0.92, females, F2,45Z3.45, pZ0.04). On the contrary,

later arriving females were progressively more genetically

distinct from earlier arriving females and males

(figure 2a,b). Average pairwise relatedness of breeding

females to males present at the time of pairing was

K0.02G0.014 (s.e.m.) early in the season, andK0.045G
0.008 late in the season.

Female preference for earlier breeding with more

ornamented males documented in this populations

(Badyaev & Hill 2002; see also figure 3b) was associated

with gradually diminishing variation in sexual ornamenta-

tion in the pool of males still available for pairing

(figure 2c; F2,27Z29.10, p!0.001, all groups differ,

Waller–Duncan K-ratio tZ2.36, p!0.05). In turn,

seasonally decreasing variation in sexual ornamentation

was accompanied by increasingly unrelated individuals in

the pool of available mates (figure 2a) and corresponding

temporal changes in patterns of mate selection

(figure 3a,b). Early in the season, pairwise relatedness

did not differ between potential partners at the time of

pairing and chosen social partners (F1,41Z2.54, pZ0.18),

whereas chosen extrapair males were less related to female

than available males or chosen social males (Waller–

Duncan K-ratio tZ2.81, p!0.05; figure 3a). Late in the

breeding season, more genetically dissimilar social and

extrapair mates were selected compared to all available

mates (all groups differ, F2,53Z4.86, pZ0.018; Waller–

Duncan K-ratio test for social versus available groups:

tZ2.29, pZ0.04; for social versus extrapair mates:

tZ2.01, pZ0.05; figure 3a). Early in the season, there

was no significant selection based on genetic

http://rspb.royalsocietypublishing.org/
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complementarity, but consistent selection of males with

the most elaborated sexual ornamentation (figure 3a,b:

F3,133Z7.32, p!0.01, only available and social groups

differ, tZ2.97, p!0.05; FSEASON (EARLY/LATE)Z6.94,

p!0.01, FGROUP (SOCIAL/AVAILABLE)Z3.01, pZ0.05,

FSEASON!GROUPZ14.1, p!0.01; see also Badyaev &

Hill 2002). Late in the season, females chose the most

genetically unrelated mates compared to all available

mates at the time of pairing, but showed no mating

discrimination based on colour (figure 3a,b; F2,122Z1.06,

pZ0.68, all groups are similar).

Throughout the season, extrapair males were more

genetically unrelated to social females than were all

potential extrapair sires that were available during the

females’ fertile period (figure 3a), and in nests with

extrapair young, extrapair fathers were less related to

social females than were social fathers (figure 3c; tpairedZ
2.03, nZ7 nests, pZ0.04). Apparent discrimination

against males with prior residency and selection of
Proc. R. Soc. B (2006)
non-local (i.e. arriving later than the female) males in

extrapair matings were evident in a greater proportion of

extrapair fertilizations in nests where both partners were

local residents (0.35; nZ23 nests) compared to nests

where at least one partner was non-local (0.08; nZ24

nests, Fisher’s exact test for occurrence of extrapair young,

pZ0.03).
4. DISCUSSION
These results have two important implications. First, we

showhowdirectional selection for amore elaborated sexual

ornamentation can coexist with self-referential selection on

genetic relatedness (Colegrave et al. 2002; Marshall et al.

2003). Early in the season, when availability of unrelated

mates in the pool of potential mates is low, but diversity in

sexual ornamentation is high (figure 2), mate selection in

this population is based on elaboration of sexual ornamen-

tation (figure 3b), and the fitness of such matings is most

strongly affected by parental provisioningwhich varieswith

http://rspb.royalsocietypublishing.org/
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male ornamentation in this population (Badyaev & Hill

2002;Duckworth et al. 2003) and early nesting (see fig. 1 in

Badyaev et al. 2003). Later in the season, the arrival of

progressively more unrelated females and the substantially

greater fitness ofmore genetically diverse offspring (fig. 1 in

Lindstedt et al. 2006) increases the strength of and

opportunity for selection for genetic complementarity

(figure 3a), while the opportunity for sexual selection on

ornamentation might become weaker because of its low

variation among available mates (figure 2c).

Proximately, the changes in the patterns and targets of

mate selection documented in this study can result from

several behavioural processes, from an active change in

mate choice and less effective mate guarding during an

influx of new extrapair partners to differential allocation to

display and mating by individuals throughout mating

season (Lindstedt et al. 2006). Regardless, the documen-

ted coexistence of both directional selection on sexual

ornamentation and balancing selection for genetic com-

plementarity is especially important for the evolution and

maintenance of variability in condition-dependent sexual

displays that indicate resource provisioning, such as the
Proc. R. Soc. B (2006)
carotenoid-based ornamentation of house finches in this

study, because consistent directional selection on such

traits is expected to limit their genetic and phenotypic

variation. Moreover, in small populations, consistent

directional selection on sexual ornamentation would

increase the risk of inbreeding (Shuster & Wade 2003),

whereas the temporal change in the targets of mate choice

documented in this study mitigates this risk (Neff &

Pitcher 2005). In addition, temporal change in targets of

female choice might contribute to coexistence of distinct

paternal strategies in this population (Badyaev & Hill

2002; Badyaev & Duckworth 2005).

Second, a combination of three processes often

documented in birds—greater fitness of earlier breeding

(Sheldon et al. 2003), preference for non-local mates

(Foerster et al. 2003; Masters et al. 2003), and sex

differences in natal dispersal (Greenwood & Harvery

1982)—enables the persistence of matings between

unrelated individuals and may provide a general mechan-

ism behind genetically complementary mate choice in

many bird species ( Johnsen et al. 2000; Blomqvist et al.

2002; Foerster et al. 2003). Thus, the greater fitness of

http://rspb.royalsocietypublishing.org/
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genetically unrelated pairs (figure 1) may generate

directional selection on natal and breeding dispersal

(figure 2a) and individual recognition instead of discrimi-

nation based on genetic relatedness per se. Whereas this

study is the first documentation of adaptive genetic

complementarity in relation to seasonal changes in

availability and genetic composition of mating pool, the

importance of sex-biased natal dispersal as the mechanism

behind matings between unrelated individuals has been

documented in a number of species (Sinervo & Clobert

2003) and some studies have found that sex differences in

dispersal increase as the population becomes more inbred

(Perrin & Mazalov 2000; Stow & Sunnucks 2004).

Reduced fitness of matings between close relatives (e.g.

Keller et al. 2002) is thought to facilitate the evolution of

mating preference for unfamiliar partners; females often

prefer males that are non-local or mates that are distinct

from the female’s social mates (Peacock & Smith 1997;

Masters et al. 2003; Kupper et al. 2004). In house finches,

strong individual mate recognition is well documented

(Lindstedt et al. 2006) and is facilitated by high breeding

site fidelity, a semi-colonial social system and pairing in

common resident flocks. Moreover, house finches experi-

enced several severe bottleneck events as they spread

across North America over the past 60 years (Hawley et al.

2006), and thus, inbreeding avoidance might be an

important strategy in many small and recently established

populations of this species. Indeed, in this population

offspring of genetically dissimilar mating were more

resistant to a novel pathogen than offspring of mating

between genetically similar partners (Lindstedt et al.

2006).

Overall, the variable and context-dependent criteria for

mate selection (Freeman-Gallant et al. 2003; Roberts &

Gosling 2003; Schmoll et al. 2005) documented in this

study, in combination with ecological and social determi-

nants of mate availability, maintains diversity in the targets

of mate choice and, ultimately, might enable coexistence

of strong directional selection on sexual ornamentation

and self-referential preference for genetically unrelated

mates (Shuster & Wade 2003; Neff & Pitcher 2005).
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