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INTRODUCTION

Environments outside the range normally experienced by a population, and the
associated changes in organisms’ morphological, physiological, or behavioral
homeostasis (stress), accompany most evolutionary changes (Bijlsma and
Loeschcke, 1997; Hoffmann and Parsons, 1997: Hoffmann and Hercus, 2000).
Depending on the intensity, predictability, and recurrence of stress, responses
might range from stress tolerance and avoidance at organismal level to the rapid
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appearance of novel traits or extinction at population level. Yet, moderate stress
is essential for normal growth and differentiation of metabolic, physiological,
neurological, and anatomical systems of an organism (Huether, 1996: Clark and
Fuciro, 1998; Muller, 2003). For example, a large part of skeletal development is
directed by exposure to tension and mechanical overloads in excess of those nor-
mally experienced by the organism (Hall, 1986: Carter 1987). Stress plays an
important role in facilitating local adaptation by enabling better adjustments, syn-
chronization, and functioning of many organismal systems (Simons and Johnston,
1997; Emlen et al., 2003; Wingfield, 2003). Anyone who has experienced the
invigorating effects of diving into icy-cold water after a sauna (both of which are
extreme environments), the health benefits of rigorous exercise (which by definition
exceeds the range of everyday environments), or analgesic and attention-sharpening
effects accompanying stressful encounters (McEwen and Sapolsky, 1995; Shors and
Servatious, 1997) will testify to these effects of stress. On the other hand, response
to an acute and unfamiliar stressor precludes normal organismal functions (Sibly
and Calow, 1989), and the high cost of stress tolerance or lack of evolved siress
response strategies can lead to evolutionary stasis (Parsons, 1994).

Extreme environments not only disrupt normal development and induce large
phenotypic changes in novel dircctions, but they also simultaneously exert strong
phenotypic selection that favors changes in these directions (Waddington, 1941;
Schmalhausen, 1949; Bradshaw and Hardwick, 1989; Jablonka et al., 1995:; Eshel
and Matessi, 1998). Not surprisingly, evolutionary diversification, the appearance
of phenotypic novelties, and mass extinction are all closely associated with extreme
environmental changes (Howarth, 1993; Guex, 2001; Nicolakakis et al., 2003).
Yet, there exists a remarkable gap in our understanding of the mechanisms behind
the evolutionary importance of stress. Whereas it is widely recognized, especially
in physiological and neurological studies, that stress plays an important role in
dire.c[ing and organizing the adaptive adjustment of an organism to ever-changing
environinents, very little is known about the mechanisms thar enable the organismal
accommodation of stress-induced effects and the evolution of a response to stress,

Lack of a developmental perspective in evolutionary studies of stress has left us
with several unresolved questions. First, how can organisms prepare for novel and
extreme environmental change? The organismal ability to mount an appropriate
reaction to a stressor requires recognition and evaluation of the extreme environ-
ment. How can this ability evolve in relation to stressors that are short and rare in
relation to a species generation time? Second, numerous studies have documented
an increase in phenotypic and genotypic variance under stress, and it is suggested
that this variance is a source of novel adaprations under changed environments.
Yet, for stress-induced modifications o have evolutionary importance they have 1o
be inherited and persist in a sufficient number of individuals within a population.
This requires an organism to survive stress and reproduce at least once: thus srress-
induced variation has 10 be accommodated by an organism without reducing
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its functionality. How is such accommodation accomplished? Moreover, could
existing organismal systems channel accumulation of stress-induced variance in
some directions, but not others and thus direct evolutionary change in response
to stress? The perspective outlined here, with specific focus on the effect of stress
during development in animals, suggests that these questions are resolved by
considering (1) the organization of developmental systems that enable accommo-
dation and channeling of stress-induced variation without compromising organis-
mal functionality; (2) the significance of phenotypic and genetic assimilation of
neurological, physiological, morphological, and behavioral responses to stressors;
as well as (3) multiple inheritance systems that transfer the wide array or develop-
mental resources and conditions berween the generations enabling long-term per-
sistence and evolution of stress-induced adaprations.

I. EVOLUTION OF RESPONSE TO STRESS

A. DETECTION AND AVOIDANCE

Stress occurs when changes in the external or internal environment are interpreted
by an organism as a threat to its homeostasis (e.g., Greenberg et al., 2001; McEwen
and Wingfield, 2003). The ability of an organism to mount an appropriate
response to potentially stressful environmental changes requires correct recognition
of environmental change and the activation of a stress response (e.g., Johnson et al.,
1992). The costs and benefits of stress detection and stress response implementation
and the costs and benefits of maintaining stress resistance strategies vary among
environments and individuals, favoring multiple solutions of dealing with stress.
Crucial to these solutions is an organism’s familiarity with the strength and types
of stressors. This familiarity is determined, in wrmn, by the recurrence of a particular
stressor in relation to a species’ generation time (Lively, 1986; Lachmann and
Jablonka, 1996; Meaney, 2001; Piersma and Drent, 2003). Yet, it is unclear how
the ability to recognize and assess potentially stressful environments can evolve.
How can organisms judge the appropriate reaction to a stressor, such as is required
to select berween stressor avoidance and stress tolerance? Are the mechanisms of
assessment and avoidance specific to a particular stressor?

1. Familiarity with Stressor: Cognitive and Physiological
Assimilation of a Rare Event

The response to stress depends crucially on prior experience and a “memory” of
response to a stressor. Generally, repeated exposure to a particular stressor favors
the evolution of mechanisms that suppress an organism-wide stress reaction and,
instead, activate stress-specific responses (Johnson et al., 1992; Veenema et al., 2003).
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For example, in higher vertebrates, stress-induced activation of the neuro-
endocrinological system increases its reactivity to internal and external stimuli, facil-
itates the processing of sensory information, and ultimately enables the formation
of a behavioral or physiological strategy for dealing with a stressor. Furthermore,
stress-induced activation of neuroendocrinological systems facilitates long-term
retention of information about a stressful event and corresponding organismal
response after the stressor is gone. Interestingly, once formed, the maintenance of
such “memory” can be accomplished by periodic exposure to different stressors.
For example, hormones associated with stress detection and avoidance also play a
major role in modifications of neural circuits (Gold and McGaugh, 1978); once the
stress-avoidance strategy is formed, exposure to even low concentration of these
hormones maintains the strategy (McGaugh et al., 1982).

Physiological studies of animals show that the repeated experience of successfully
overcoming social stresses during ontogeny is a prerequisite for the acquisition of a
normal repertoire of behavioral strategies (Huether, 1996; see also Gans, 1979).
An insightful example comes from experiments that show that individuals exposed
to repeatable but consistently unfamiliar (and thus “uncontrollable” by an
animal) stressors develop “stressful helplessness”™; i.e., they lose their ability to
react to any stressor (Katz et al., 1981; Johnson et al., 1992; Avitsur et al., 2001).*
On the contrary, individuals that were allowed to develop a stress-avoidance
strategy by exposure to a previously encountered stressor not only developed stress
tolerance to a particular stressor but also actively sought our other mild stressors.
In the absence of other stressors, their stress-avoidance abilities diminished
(Katz et al., 1981; Johnson et al., 1992; Avitsur et al.. 2001). These results suggest
that, once originated, a stress-response strategy can be maintained by other
environments and that adapration to one type of stressor, at least in “social” stresses,
may facilitate adaptation to other stressors.

Phenotypic assimilation of the appropriate stress response is facilitated when
neural circuits and hormones related to the stress response are also involved
in other organismal functions (Aston-Jones et al., 1986; Greenberg et al., 2001).
In such cases, even a single stressful experience during development is often
enough to induce changes that, in the future, will prevent organism-wide stressful
reactions and activate stress-specific behavioral and physiological responses
(Levine et al., 1967; 1989). Generally, stress-induced reorganization of developmental
pathways and organismal function rather than the production of novel stress-
specific pathways is thought to account for the ease with which individuals and
populations lose and gain the ability to resist stress in laboratory populations
(Chapin et al., 1993).

*Organisms’ “stress helplessness™ from lack of opportunity to develop stress-specific avoidance
strategy is conceptually analogous to “morphological stasis” of lineages that occur in cnvironments
with frequent acute and diverse stresses that prevent the evolution of stress-specilic adaprations.
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B. STRESS-AVOIDANCE STRATEGIES

The ability to remove a stressor actively by either relocation or avoidance requires
an evolved ability to detect or anticipate stressful changes and the “knowledge” or
“memory” of stress-avoidance strategies or adjustments (Bradshaw and Hardwick,
1989; Jablonka et al., 1995; Denver, 1999). Therefore, the evolution of stress
avoidance is more likely when stressful events are predicrable, prolonged, and
frequent in relation to generation time (Ancel Meyers and Bull, 2002; Figure 13-1).
Alternatively, the short-term avoidance of a frequent and mild stressor might be
accommodated by behavioral or physiological plasticity of an organism (Figure 13-1;
Schlichting and Smith, 2002; Nicolakakis et al., 2003; Piersma and Drent, 2003;
Wingfield and Sapolsky, 2003). For example, repeated challenges of an organism’s
immune system enable a more precise reaction to a specific pathogen, frequent
and diverse stressors facilitate the formation of complex and robust metabolic
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FIGURE 13-1. Conceptual outline of the acquisition of ability 1o accommodate stress (solid black
linc and gray arca) across a life span of an individual under (A) normal (i.e., not stressful) environment;
(B) novel strong stressor (examples: stress-enhanced learning, behavioral avoidance of a stressor, social
stressors), (C) frequent mild stressor (examples: weather-induced migrations of arctic passerines, periodic
torpor), (D) frequent, novel, and strong stressors (c.g., “living fossils,” “stressful helplessness™. “Gen”
(solid gray line) indicates genetic cffects on acquisition of ability 10 accommodate stress; “exp” (dotted
black line) indicates the cffects of individual experience with stressor over the gencration time; “age™ is
a duration of a single gencration; gray arrows show the timing and strength of a stressor.
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networks (Clark and Fucito, 1998), and challenges to skeletal tissues caused by
mechanical overload during growth lower developmental errors (see also Simons
and Johnston, 1997; Graham et al., 2000). Wingfield (2003; Wingfield and Sapolsky,
2003) reviews the cases when selection favors stress avoidance and where suppres-
sion of organism-wide stress response is accomplished by a blockage of either neural
system perceiving a stressor or sensitivity of individual organismal systems to stress-
induced increase in circulating glucocorticosteroids. Generally, when the environment
during growth is a good predictor of the environment to be experienced as an adult,
developmental plasticity in morphology and behavior can enable the accommodation
of internal and external environmental fluctuations (Levine et al., 1967). Consequently,
organisms activate stress reactions when there is a discordance between environ-
ments during their development and their current external and internal environments
(Meaney, 2001; Bateson et al., 2004, Weaver et al., 2004).

On the longer time scale, avoidance of a predictable stressor can be accomplished
by changes in an organism’s life history, especially by altering the timing of reproduc-
tion or duration of development. Common cases include stress-induced modification
of the timing of metamorphism in amphibians, changes in the duration of gestation
in mammals, and the timing of flowering and seeding in plants (e.g., Bradshaw and
Hardwick, 1989; Stanton et al., 2000). For example, tadpoles of several species accel-
erate metamorphosis when environmental changes indicate a greater probability of
desiccation:; this sensitivity to stressor cues is regulated by the corticotropin-releasing
hormone signaling system (Denver, 1999). Heil et al. (2004) describe evolutionary
establishment of environmentally induced stress avoidance in Acacia plants.

In sum, initial behavioral accommodations of stress (e.g., hiding, relocation,
lowering metabolism) may set the stage for the evolution of adaptive stress-avoidance
strategies (e.g., periodic hibernation, migration, torpor). When a stressor is reliably
preceded by other environmental changes, their mutual recurrence facilitates the
establishment of stressor recognition, assessment and avoidance strategies, such
that an evolved stress-specific strategy does not involve an activation of an organism-
wide stress response. When individuals vary in their reaction to stress and when
stress-induced strategies are favored by natural selection during and after stressful
events, these strategies can become phenotypically and genetically assimilated in a
population (Baldwin, 1896; Hinton and Nolan, 1980; Oyama, 2000; West-Eberhard,
2003; Figure 13-1).

II. EVOLUTIONARY CONSEQUENCES OF STRESS

A. STRESS-INDUCED VARIATION

A stress-induced increase of phenotypic and genctic variance in a population has
three main sources. First, directional sclection imposed by a stressor can result in
faster rates of mutation and recombination. Second, stress challenges to regulatory
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mechanisms can release and amplify previously accumulated, but unexpressed,
genetic and phenotypic variation. Third, stressful environments can facilitate
developmental expression of genetic variance that had accumulated, but was phe-
notypically neutral, under normal range of environments. These sources of variation
can be adaptive under stressful conditions when they facilitate the population’s
persistence through a stressful event by the development of novel adaptations to
changed environments.

1. Generated Variance

Organismal reaction to a stressor is often associated with generation of variation in a
directional and locally adaptive manner (Jablonka and Lamb, 1995; West-Eberhard,
2003). In some cases, such directionality is attributed to the channeling effects of
complex developmental networks (e.g., Walker, 1979; Roth and Wake, 1985). In
other cases, it is associated directly with a stressful environment (e.g., Wills, 1983)
or with stress effects on organismal fitness (Hadany and Beker, 2003). Some studies
documented that an extreme environment increases genetic variation because of
the increase in mutation and recombination rates (Imasheva, 1999, reviewed in
Hoffmann and Parsons, 1997). When such mutations are directional (or “focused”,
sensu Caropale, 1999) in relation to a stressor—that is when the stressful environ-
ment both causes a mutation and favors phenotypic change associated with this
mutation—such an increase in mutation rate results in greater similarity among indi-
viduals in response to a stressor facilitating evolutionary adaptation to novel envi-
ronments (Shapiro, 1992; Jablonka and Lamb, 1995; Wright, 2000). For example,
exposing Chlamydomonadas to a stressful ultraviolet irradiation increased mutation
rates in traits aflecting fitness (Goho and Bell, 2000). Similarly, stress induced direc-
tional and locally appropriate mutations in bacteria (Caimns et al., 1988; Sniegowski
et al., 2000; Wright, 2000; Bjedov et al., 2003). Exposure to acute stress was associ-
ated with rapid adaptive evolution of a gene family, primarily because of gene dupli-
cation, in cyanobacteria (Dvornyk et al., 2002), with rapid amplification of a gene in
humans (Prody et al., 1989), and with greater frequency of sexual recombination in
Volvox (Nedelcu and Michod, 2003). Other examples include long-term effects of
stress on gene expression and DNA sequence, activation of previously unexpressed
genes by stressful events, and stress-induced transposition in plants (Belyaev and
Borodin, 1982; Ruvinsky et al., 1983; McClintock, 1984; Wessler, 1996). At the level
of phenotype, induction of a phenotypic trait by a stressor and concurrent selection
on the induced trait are common (Jablonka et al., 1995; Oyama, 2000; Nicolakakis
et al., 2003; Price et al., 2003; West-Eberhard, 2003).

2. Hidden Variance

Stressful environments often reveal greater phenotypic and genetic variability than is
seen under normal environments. It is commonly suggested that such hidden vari-
ation results from stress-induced challenge of preexisting genetic and developmental
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architecture of organismal homeostasis (Scharloo, 1991). In turn, an increase in
variation in individual organismal systems and their subsequent reorganization is
thought to enable the formation of novel adaptations (Bradshaw and Hardwick,
1989 Eshel and Matessi, 1998; Gibson and Wagner. 2000; Lipson et al., 2002;
Schlichting and Smith, 2002; Badyaev, 2004¢). The idea that the extreme environ-
ment’s challenge to previously canalized system is the source of such hidden variation
is collaborated by observations of the stress-induced sudden appearance of primirive,
ancestorlike forms in some lineages (Guex, 2001), by studies of phenotypic
responses to stress that mimic the expression of mutation (Goldschmidr, 1940;
Chow and Chan, 1999; Schlichting and Smith, 2002), by documentation that
phenotypically neutral genetic variance in ancestral forms of cultivated plants
becomes highly adaptive in the hybrid backgrounds of domesticated forms (Lauter
and Doebley, 2002; Rieseberg et al., 2003), and by numerous examples of
environment dependency in expression of genetic variation (Kondrashov and
Houle, 1994; Leips and MacKay, 2000; Badyaev and Qvarnstrom, 2002; Keller
et al., 2002; Badyaev, 2004b).

Yet, despite these examples, it is not clear how genetic and developmental
systems accuimulate and store phenotypically neutral genetic variance while not
expressing it (Eshel and Matessi, 1998: Wagner and Mezey, 2000; Hermission
et al., 2003; Masel and Bergman, 2003). Specifically, the discussion has focused on
the existence of “evolutionary capacitors” (Rutherford, 2000) and “adaptively
inducible canalizers” (Meiklejohn and Hartl, 2002) which are specific mechanisms
that buffer and accumulate developmental variation, producing “hidden reaction
norms” of a phenotype. A debated question is whether “evolutionary capacitors”
are stressor-specific regulatory systems or whether evolutionary capacity is a prop-
erty of any complex and locally adapted organismal system. Rutherford and
Lindquist (1998) described that mutations at the genc for the stress-induced chap-
erone proteins (Hsp90) harbor abundant but normally unexpressed genetic variation
that when selected leads to the appearance and assimilation of novel phenotypes
in the population (Ruden et al., 2003). Thus Hsp90 might be a specialized evolu-
tionary capacitor that bulfers developmental variation but under stressful conditions
facilitates adaptation (Meiklejohn and Hartl, 2002). However, recent studies
suggested that “evolutionary capacity” is a property of most adapted developmental
systems that when challenged by a novel environment (external or internal) reveal
large genetic variation (Kirschner and Gerhart, 1998; Rutherford, 2000; Bergman
and Siegal, 2003; Badyaev, 200+a). For example, Milton et al. (2003) showed
experimentally that Hsp90 is involved in buffering of only some developmental
pathways and not others. Similarly, Szafraniec et al. 2001) found that as long as
mutant effects are not expressed, many complex and redundant developmental
systems cnable accumulation of mutational variance. Thus complex developmental
processes and genetic networks can constrain variation in individual traits (Rice,
2004, and phenotypically ncutral genetic variation can accumulate in such systems
given sufficient time and population size (Hermission and Wagner, 20053).
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Interestingly, in many complex social networks, a stress-induced decrease in
integration accelerates acquisition of a new optimum phenotype. An interesting
example is the stress-induced modification of foraging and nest site searches in
social insects. In some ant species, a destruction of the nest site leads to the breaking
of the strict hierarchical social structure and rapid proliferation of random indi-
vidual nest search routes and patterns. When a few individuals find a new suitable
site, their recruitment of other individuals to follow them to the site rapidly leads
to crystallization of the relocation route and movement patterns and reinstatement
of the social integration of the colony (Britton et al., 1998; Couzin and Franks, 2003).

In sum, stress resistance might be a by-product of an organism’s complexity,
and accumulation of unexpressed variation by genetic and phenotypic develop-
mental systems facilitate evolutionary change under extreme environments.
Organismal homeostasis can be compromised by either novel directional selection
on some organismal systems but not others, or by organism-wide effects of a stressor,
resulting in weaker organismal homeostasis and greater phenotypic plasticity
(Schlichting and Pigliucci, 1998; Newman and Muller, 2000). Under the former
scenario, a more directional and [aster response to a stressor at the population
level is expected because stress-induced variation will be channeled and amplified
by existing functional complexes. The latter scenario should produce a greater
opportunity for the evolution of morphological novelty. Overall, the weakening
of complex phenotypic regulatory systems and accumulation of neutral genetic vari-
ance provides a link between diversification, evolutionary change, and extreme
environments.

B. BUFFERING, ACCOMMODATING, AND DIRECTING
STRESS-INDUCED VARIATION

Organisms can maintain functionality in stressful environments by channeling and
accommodating stress-induced variation. This is accomplished by buffering some
organismal functions while increasing the flexibility of others (Alberch, 1980;
Nijhout, 2002). How can such organization evolve?

1. Stress Buffering: A By-Product of Complexity
in Development or an Evolved Strategy?

Organismal functions most closely related to fitness are thought to be the
most buffered against internal and external stressors (Waddington, 1941;
Schmalhausen, 1949; Stearns and Kawecki, 1994). Yet, an organism’s functioning
in changing environments requires the ability to track and respond to these envi-
ronments, Consequently, evolved systems that shield an organism from stressors
restrict an organism’s ability and capacity to adapt continuously to changing envi-
ronments (Wagner et al., 1997; Eshel and Matessi, 1998; Ancel, 1999; Schlichting
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and Smith, 2002). For example, suppression of stress-induced activation of the
sensory systems limits an organism'’s ability to acquire and retain the sensory cues
and behavioral strategies necessary for stress avoidance (see preceding text
Huether, 1996). On the one hand, a lack of phenotypic plasticity results in popu-
lation extinction under stress (Gavrilets and Scheiner, 1993; Ancel, 1999). On the
other hand, extensive phenotypic variability in organismal functions weakens the
effects of directional selection imposed by stressful environments and thus lessens
the opportunity for genetic assimilation and evolution of adaptations to stress
(Fear and Price, 1998: Ancel, 2000; Huey et al., 2003). Thus, for functioning of
organismal systems that are most closely related to fitness, intermediate levels of
phenotypic plasticity and environmental sensitivity should be the most optimal
(Behera and Nanjundiah, 1995; Wagner et al., 1997; Ancel, 2000; Price et al.,
2003). Yer, it is unclear how an optimal level of stress buffering can evolve.
Specifically, is it shaped by natural selection exerted by extreme environments or
by internal stabilizing selection for the cohesiveness of an organism?

Recent studies suggest that buffering is an emerging property of developmental
complexity rather than an evolved stress-resistance mechanism (see preceding
text); the increasing complexity of developmental pathways and networks leads
directly to environmental and genetic stability and canalization (Baatz and Wagner,
1997; Clark and Fucito, 1998; Rice, 1998; Waxman and Peck, 1998; Meiklejohn
and Hartl, 2002; Siegal and Bergman, 2002; Ruden et al., 2003; Rice, 2004).
Complex genetic and developmental networks can accommodate the effects of
stresstul perturbations without the loss of function or structure, while building up
neutral genetic variation (Rutherford, 2000; Bergman and Siegal, 2003; Masel, 2004).

An organism’s resistance to extreme environments depends on the historical
recurrence of stressors as well as the ability of existing developmental processes to
accommodate stress-induced changes (Gans, 1979; Lively, 1986; Jablonka and
Lamb, 1995; Chipman, 2001; Arthur, 2002; Emlen et al., 2003). Thus differences
among organisms and organismal systems in response to stress may reflect different
histories of past selection. Some traits (such as foraging or sexual traits) may expe-
rience recurrent and fluctuating directional selection that favors rapid transformations
in response to changing environments, whereas other parts of a phenotype might
be under concuirent stabilizing selection favoring canalization (Olson and Miller,
1958; Wagner, 2001). A combination of long-term stabilizing selection on the
entire organism with strong and variable directional selection imposed by a stressor
on a few organismal components should favor the evolution of modular organization
where stress-induced modifications of traits can be accomplished with minimum
interference with the rest of the phenotype (Simpson, 1953; Berg, 1960; Kirschner
and Gerhart, 1998; Wagner and Mezey, 2004; Wagner ¢t al., 2005; Figures 13-2
and 13-3). Persistence of such modular organization under fluctuating selection
pressures is enabled by developmental complexity of its components (Badyaev,
2004a,c); such organization channels stress-induced variation while buffering
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organismal components and thus enables a greater and more similar response to a
stressful environment among individuals.

2. Stress Accommodation by Changes in an Organism’s Integration

Organisms might accommodate stress-induced variation without the loss of
function by lessening homeostasis of individual systems. Such a decrease in an
organism’s integration under stress allows exploration of new environmental niches
and novel solutions to adapt to these environments (Holloway et al., 1990, 1997;
Raberg et al., 1998; Badyaev and Foresman, 2000; Hoffmann and Woods, 2001).
For example, individual hormonal systems have a greater potential range of per-
formances and can remain functional under a wider range of environments than is
allowed by homeostasis under normal range of environments (Dickinson, 1988:
Johnson et al., 1992; Greenberg et al., 2001). In other words, organism-wide homeo-
stasis is accomplished at the expense of the potential of individual systems and
components (e.g., Smith-Gill, 1983), and organisms might react to a stressor by
actively weakening homeostasis. For example, frequently documented suppression
of immunocompetence under stressful conditions might facilitate novel adaprations
to a stressor by realizing full capabilities of individual immune systems (Raberg
et al., 1998; Avitsur et al., 2001). When stress is associated with damage of tissues
and accumulation of heat shock proteins, as is the case with hypertension and
greater activity, suppression of immunological functions enables individual organ-
ismal systems to respond to a stressor without activation of organism-wide autoim-
munological response (Dickinson, 1988; Raberg et al., 1998; Avitsur et al., 2001).
However, there are examples of stress-induced increases in organismal integration
and corresponding suppression of random genetic and developmental variation
under stress (e.g., Siegel and Doyle, 1975; Bennington and McGraw, 1996;
Badyaev and Foresman, 2004). For example, exposure to stress prevented the
expression of deleterious mutations in Escherichia coli (Kishony and Leibler, 2003).
Similarly, fluctuating asymmetries of developmentally independent forewings and
hindwings became integrated in bumblebees raised under stressful, but not under
control conditions, apparently as a result of a greater resource exchange between
different tissues under stress (Klingenberg et al., 2001). An increase in overall inte-
gration accounted for lesser phenotypic variation in the foraging structures of several
mammalian species raised under stressful conditions (Badyaev, 1998; Badyaev
et al., 2000). Similarly, when breeding opportunities are limited or when the ben-
efit of the current breeding attempt exceeds the costs of stress response, organisms
can “buffer” reproductive systems by blocking or reducing their sensitiviry to stress
or by increasing compensatory interactions within reproductive systems to coun-
teract the stress effects on the organism (Wingfield and Sapolsky, 2003).
When stressors are mild and occur during ontogeny, individual organismal systems
often accommodate stress-induced variation without the reduction in functionality
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(Bradshaw and Hardwick, 1989; Clarke and McKenzie, 1992; Huether, 1996;
Schandorff, 1997). The degree of phenotypic plasticity is usually the highest, and
ability to accommodate stress-induced variation (and to be shaped by stress) is the
greatest during early stages of development (Figure 13-1). The importance of the
timing of stress for directing the evolution of morphological traits is well docu-
mented. For example, when components of foraging structures differ in patterns of
ossification, morphological variation in later ossified components is directed by
stress-induced modifications of earlier ossified components (Figure 13-1; Badyaev,
1998: Mabee et al., 2000; Badyaev and Foresman, 2004; Badyaev et dl., 2005).
Neyfakh and Hartl (1993) documented that prior exposure 1o a stressor makes the
ontogeny of morphological structures more amenable to subsequent modification.
Moreover, when stress occurs early in ontogeny, accommodation and channeling
of stress-induced variation by existing organismal structures causes similar reorga-
nization in many individuals simultaneously (Roth and Wake, 1985; Chapin et al.,
1993; Figure 13-2), which facilitates adaptive evolution (Goldschmidt, 1940;
West-Eberhard, 2003). Our studies of shrew mandibles (Fiumara and Badyaev,
1998; Badyaev and Foresman, 2000, 2004; Foresman and Badyaev, 2003; Badyaev
et al., 2005) and bumblebee wings (Sowry and Badyaev, 1999; Klingenberg et al.,
2001), as well as other studies (Leamy, 1993 Badyaev, 1998; Klingenberg and
Mclntyre, 1998; Klingenberg and Zaklan, 2000; Badyaev et al., 2001; Juste et al.,
2001; Badyaev and Young, 2004), support these ideas; patterns of expression of
stress-induced developmental variation were similar among individuals because of
the similar effects of integration on channeling stress-induced variation and
because variation from different sources is expressed by the same developmental
pathways (Cheverud, 1982; Meiklejohn and Hartl, 2002, Figures 13-2 and 13-3).
Gans (1979) suggested that because extensive reorganization of the organismal
phenotype is needed to deal with extreme environments, only a small portion of
the population survives the stressful environment. This increases the probability of
appearance of extreme phenotypes. Population size fluctuations under stress also
affect the ability of genetic and developmental systems to accumulate and retain
solutions to rare environmental events (Wagner, 2003; Hermission and Wagner,
2005). However, the effect of population size on the probability of establishing and
retaining a novel phenotype differs between normal and extreme environments.
Under normal conditions, modifications are likely to be established in larger popula-
tions that are more buffered from stochastic fluctuations and are able to accumulate
larger amounts of neutral genetic variance (Gavrilets, 2004). Under stressful envi-
ronments, that not only introduce greater variability, but also select toward a new
phenotypic optimum, smaller populations should allow greater evolutionary
change (Barton and Charlesworth, 1984; Gavrilets, 2004). Moreover, when a stressor
is associated with abrupt changes in population composition—as is the case with
extensive mortality or dispersal—it can lead to the modification of genetic and
phenotypic interrelationships among the traits (Bryant and Meffert, 1988:
Cheverud et al., 1999; Badyaev and Foresman, 2000).
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3. Accommodation of Stressor by Channeling Stress-Induced Variation

Natural selection favors organismal homeostasis that maintains some develop-
mental variation for adjustment of the organism to its external and internal en\l'Ji-
ronments (Simons and Johnston, 1997; Wagner et al., 1997; Eshel and Matessi
1998; Emlen et al., 2003; Nanjundiah, 2003). Stressful conditions can increasé
this variation and differences among organismal systems in their reaction to :
stressor (and the corresponding channeling of stress-induced variation) might ;)i .
the introduction and expression of variation available for selection and [hgus b'as
evolutionary change (Bonner, 1965; Roth and Wake, 1985; Jablonka and b,
1995; West-Eberhard, 2003). ‘ ‘ pia and Lamb.
‘Empirical studies show that the coordinated development of morphological
traits leads to their similarity in expression of stress-induced developmental variiion
(Leamy, 1993; Smits et al., 1996; Badyaev and Foresman, 2000; Klingenberg and
Zaklan, 2000; Klingenberg et al., 2001, 2004; Badyaev et al., 2005) Oir studgies f
four spec.ies of shrews showed that stress-induced variation was l.argely confine(:i
to the directions delimited by groups of traits involved in the same functi
(muscle attachments) (Badyaev et al., 2000; Badyaev and Foresman 2004(});1
Il?terestingly, this channeling was concordant with the direction of’ speci .
divergence—species differed most in the same traits that were most sensi[l'J veles
stress within each species (Badyaev et al., 2000). These results not only cont1“1 i
strong effect .of functional complexes on directing and incorporating strzss-ind::ez
variation during development, but also might explain the historical persistence of
complex groups of traits despite the effects of stressful environmentlJ o

C. INHERITANCE

:Z)r a strejs-induced modification to be preserved in a lineage, it needs to be
. :r?srzlrirzi da;ei\i?zein organism, apd if_ conditions favoring this modification recur,
; generations, i.c., inherited. This presents two problems. First
can environmentally induced effects become inherited? Second, if each or anisrr;
accomm(.)da[.es a stressor by different adjustments, then how ’can this dg i
enasble directional evolution of a stress-response strategy? R
[ion:esszcl}r}l(ilg:z;is-g:relg;?fplc changes commonly persist across several genera-
be caueed by e et 10fns }far.ry-over effects (sznsu Jablonka et al., 1995) can
incorporation of a stressorohgnﬁs(;izll Sel;be[[anclfS) 'mt}'lleri[ance e velopmenta!
. . » he ects that influence expression of genetic
variance in subsequent generations, epigenetic inheritance of stresps-induced vagriation
2211(1)((1) Os;[r\t;/i;li-rgls),e?}sla\:;llzaz)sol;;ahavioral effec[§ (Jablonka and Lamb, 1995; Oyama,
relaionshine o groul;s o m. F?r ex?mple, mheriFance of dominant-subdominant
diferen: b orconel S[ressfaln) social mammals is accomplished by mechanisms
(Creel et ol Loomral ste ul encounters that established the dominance structure
) ; Goymann and Wingfield, 2004). Similarly, maternal care often
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sets the stage for a lifelong reaction to stressors, by modifying the expression of
genes that regulate behavioral, physiological and endocrinological responses to
stressors (Mousseau and Fox, 1998; Meaney, 2001; Badyaev, 2002; Weaver et al.,
2004). Stress-induced changes in neuroendocrinological systems often occur with
significant delay after the exposure to stress and persist for a long time. This led to
the suggestion that the primary function of such delayed changes is integration
of past stress-induced responses and sensitization of the organism to future
occurrences of similar stressors (Huether, 1996). In turn, within-generation and
between-generation maintenance of stress-induced changes in neural and physio-
logical systems is accomplished by similar hormonal mechanisms (McGaugh et al.,
1982; Meaney, 2001). Poststress fluctuating environments are often different from
both the environment before the stressor and the stressful environment itself and
have few predictable cues to organisms that survived stressful event. Under such
conditions, a short-term inheritance of developmental resources is highly advanta-
geous (Jablonka et al., 1995). More generally, short-term and nongenetic inheritance
is benelicial when the frequency of stress recurrence is greater than the generation
time, but shorter than is necessary for the spread and fixation of adaptive mutation
(i.e., the evolution of genetic adaptation) (Levins, 1963; Ancel Meyers and Bull, 2002).
In sum, accommodation of stress-induced variance by an organism can be facil-
itated by recurrent developmental stressors; genetic assimilation replaces stress-
induced developmental modification if this modification has a fitness advantage in
both stressful and poststress environments (Schmalhausen, 1949; Waddington,
1952). Even when the short-term organismal responses to a stressor are not
genetically heritable, differences among organisms in the ability to survive stress
and the recurrence of stressful environments will canalize stress-induced responses
developmentally (Baldwin, 1896; Schlichting and Pigliucci, 1998; Ancel, 1999;
West-Eberhard, 2003).

IIl. EVOLUTIONARY ADAPTATION

Close association between extreme environments and the pattern and rate of adaptive
evolution is one of the best-documented patterns in evolutionary biology; stresslul
environments uncover, generate, and amplify phenotypic and genetic variation
among individuals in the population and facilitate population divergence
(Hoffmann and Parsons, 1997). Unlike environmental fluctuations within a range
normally experienced by a population, stressful environments modily and reorganize
integrated developmental and genetic nerworks simultaneously in a large group of
individuals: directional change produced by these networks in combination with
strong and novel directional selection by stressful environment facilitates rapid
evolution and diversification (Jablonka and Lamb, 1995; West-Eberhard, 2003).
Moreover, when a stressor compromises an organismal trait, releasing accumulated
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and unexpressed genetic variation associated with the trait’s function, such vari-
ance enhar?ces the organismal response to selection acting on this trait‘ (Zakharov.
1993: .Robmson and Dukas, 1999: Bergman and Siegal, 2003). Example includé
stress-induced cartilage changes during development of bird skeletons that lead to
ica- formation of novel structures (Muller, 2003), and stress-induced modifications
in integration of foraging structures that facilitate diversification of cichlid jaw mor-
phology (Chapman et al., 2000; Albertson et al., 2003). Moreover. extrejme envi-
ronments cause evolutionary change by modifying population dyn;lmic processes
such.as immigration, population size, inbreeding, and competition (Kawata, 2002
Gavrilets, 2004). For example, in shrews, periods of environmental str;ss aré
accompanied by increased food competition and extensive mortality (Zakharov et al

1991.; Badyaev et al., 2000). In turmn, greater interspecific competition for foo&
amplified and extended the effects of stress exposure on the ontogeny of morph

logical structures (Foresman and Badyaev, 2003). e L

A. STRESS-INDUCED EVOLUTION VERSUS STRESS-INDUCED STASIS

Stress _speciﬁciry, intensity, and recurrence are of fundamental importance for its
evolutionary consequences (Bradshaw and Hardwick, 1989: Parsons, 1994: Ancel
Meyers and Bull, 2002). Parsons (1994) suggested that ,only son;e sub;ets of
stressfu'l envi.ronmen[s—narrowly fluctuating and slowly changing in relation to
generation time—are associated with a rapid evolutionary change, whereas
extreme and rapidly changing environments promote morphological stas,is because
of the costs associated with stress tolerance (see also Hoffmann et al 2003)

Furthermore, only stressors specific to an organismal system are ex| ':acted t(;
enable assimilation and evolutionary persistence of stress-induced adEptations

because more general stressors favor stress tolerance by increasing homeostasis in’
turn leading to a reduction in organismal metabolism and fitness. Thus, amon ,the
array of organismal responses to stressful environments, only accomr;lodatiogn of
stress-induced variation and stress avoidance leads to evolutionary change
(Parsons, 1993). In turn, because of its association with lower metabglism angd
stronger regulatory systems, stress tolerance is unlikely to be associated with
greater organismal plasticity, thus leading to stasis under extreme environments

which is observed in “living fossils” (Parsons, 1993, 1994: Figure 13-1). ,

IV. CONCLUSIONS

Severs'il themes and approaches in recent studies significantly further our under-
ztand;n{; of t'he relationship berween stressful environments and evolution. First
e;gzscgnerlleOI}men[s modlfy (most often r?duce) the integration of neurological:

ological, morphological, and behavioral regulatory systems. Second, such
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reduced integration and subsequent accommodation of stress-induced effects by
complex developmental systems enables organismal “memory” of a stressful event
as well as phenotypic and genetic assimilation of the response to a SIressor. Third,
the widely held assumption of randomly generated variance under stressful conditions
is not correct. In complex functional systems, a stress-induced increase in pheno-
typic and genetic variance is often directional, channeled and amplified by the
existing developmental system, which accounts for similarity among individuals in
stress-induced change and thus significantly facilitates the rate of adaptive evolution.
Fourth, accumulation of phenotypically neutral genetic variance might be a prop-
erty of any locally adapted and complex developmental system; novel or extreme
environments facilitate the phenotypic expression of this variance. Fifth, stress-
induced effects and stress-resistance strategies can persist for several generations.
In animals, such carry-over effects are enabled by hormonal effects on leaming and
gene expression and are facilitated by maternal inheritance of either a stressor or a
stress-induced response. These transgenerational effects along with the complexity
of developmental systems and stressor recurrence might lead to genetic assimilation
of stress-induced effects. Accumulation of neutral genetic variance by develop-
mental systems and phenotypic accommodation of stress-induced eflects, together
with the inheritance of stress-induced modifications, ensures the evolutionary
persistence of stress-response strategies and provides a link between individual

adaptability and evolutionary adaptation.
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